PA

Optimisation of piezoelectric and dielectric properties of $Bi_4Ti_{2.95}W_{0.05}O_{12}$ ceramics by Ce^{4+} doping

Tao Chen*, Tiantian Liu, Yang Chen, Qi Zhang

School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, China

Received 13 January 2025; Received in revised form 28 February 2025; Accepted 11 March 2025

Abstract

High-temperature lead-free $Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O_{12}$ (where x = 0, 0.02, 0.04, 0.06) piezoelectric ceramics were prepared by conventional solid-state method and sintering at 1080 °C. This study investigated the effects of modulating the degree of ceramic lattice distortion by varying the amount of Ce^{4+} doping on the microscopic morphology as well as the piezoelectric and dielectric properties. The results indicated that an appropriate level of Ce^{4+} doping resulted in a suitable degree of lattice distortion within the piezoelectric ceramics, thereby enhancing both the piezoelectric and dielectric properties while reducing dielectric losses. Notably, when the doping level reached x = 0.04, the sample exhibited its optimal performance, specifically with a d_{33} of 25 Pc/N, T_C of 618 °C, tan δ of 0.09 and Q_m of 3364. These findings strongly suggest that this material has significant potential for applications in high-level sensing domain.

Keywords: Ce-Bi₄Ti_{2.95}W_{0.05}O₁₂, lattice distortion, microstructure, dielectric and piezoelectric properties

I. Introduction

Piezoelectric materials exhibit a unique phenomenon known as the piezoelectric effect, which enables the conversion of electrical energy into mechanical energy and vice versa. This effect allows these materials to undergo mechanical displacement in response to an applied electric field and to generate electrical signals when subjected to mechanical stress. As a result, piezoelectric materials find extensive applications in various fields, including transducers, aerospace technology, electronics and medical devices [1,2].

Bismuth layer-structured ferroelectric materials with general formula $(Bi_2O_2)^{2+} + (A_{m-1}B_mO_{3m+1})^{2-}$ are characterized by high Curie temperature and exceptional thermal stability, which is promising for applications in piezoelectric devices for high-temperature environments [3,4]. Very important representative of this family is piezoelectric $Bi_4Ti_{2.95}W_{0.05}O_{12}$ (BTW) ceramics. Owing to its distinctive layered structure, the crystal exhibits a relatively elongated *c*-axis, resulting in a substantial coercive field [5,6]. As a result, the polarization

process is primarily restricted to the *a-b* plane, which makes it difficult to attain a fully polarized state in the whole ceramics.

From a structural perspective, BTW consists of bismuth oxide layers $(\tilde{Bi}_2 \tilde{O}_2)^{2+}$ and perovskite-like layers $(A_{m-1}B_mO_{3m+1})^{2-}$ [7,8]. In bismuth layer-structured piezoelectric ceramics, the bismuth oxide layers act as insulators, while spontaneous polarization predominantly occurs in the perovskite-like layers. Recent studies have indicated that A-site doping exerts a more pronounced effect on enhancing the piezoelectric and ferroelectric properties of these ceramics compared to Bsite doping. This disparity is largely attributable to differences in the ion size. Cerium (Ce) is commonly employed as an A-site dopant in bismuth layer-structured ferroelectric ceramics, where it typically exists in the +3and +4 oxidation states. The introduction of Ce doping has been shown to significantly improve the resistivity, temperature stability and piezoelectric performance of these ceramics [9–13].

Although the modification of bismuth-layered piezoelectric ceramics through A-site doping has been extensively studied, the microscopic lattice-level implications remain insufficiently understood. Gaining a deeper understanding of the fundamental mechanisms

^{*}Corresponding authors: tel: +86 13716508359,

e-mail: chentao@tust.edu.cn

of doping at this scale is crucial for advancing the development of future piezoelectric materials [14,15]. In this work, the A-sites doping of BTW piezoelectric ceramics with Ce⁴⁺ ions was investigated and the Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O₁₂ (x = 0, 0.02, 0.04, 0.06) ceramics were prepared by the traditional solid-state reaction process and final sintering. This study comprehensively investigates the impact of varying Ce⁴⁺ doping levels on the lattice distortion of BTW piezoelectric ceramics. Additionally, it examines how these doping variations influence the microscopic morphology, electrical conductivity, piezoelectric performance, dielectric properties and temperature stability of the ceramics.

II. Experimental

 $Bi_{4-x}Ce_{x}Ti_{2.95}W_{0.05}O_{12}$ (BCTW, x = 0, 0.02, 0.04,0.06) ceramic samples were prepared by the conventional solid-state reaction technique. Firstly, raw materials including Bi₂O₃ (AR, 99%), TiO₂ (AR, 99%), WO₃ (AR, 99%) and CeO₂ (AR, 99%) were weighed according to the stoichiometry. The powders were subjected to a ball milling in a planetary ball mill for 16h by using anhydrous ethanol as the medium and agate balls as the grinding media. The dried powders were subsequently calcined at 800 °C for 4 h in a muffle furnace. The calcined powders were then ball milled for an additional 16 h under identical conditions. After drying, the powders were granulated using 5 wt.% PVA as a binder and subsequently pressed at 300 MPa into disc-shaped pellets with a diameter of 15 mm and a thickness of 1 mm. The disc-shaped samples were heated at 650 °C for 2 h to remove the PVA. Subsequently, the samples were sintered in a sealed alumina crucible at 1080 °C for 3 h.

The crystalline phase of the sample was identified by X-ray diffraction (XRD, Model D8 Advanced, Bruker AXS GMBH). The lattice constants of the sample were then obtained by Rietveld refinement fitting. Structural analysis of samples was performed by laser Raman spectroscopy (Raman, Model DXR). The microstructure was determined by scanning electron microscopy (SEM, Model JSM-6700F).

The sintered ceramics were polished on both major surfaces and coated with silver paste. The ceramics were then fired at 800 °C for 30 min to form Ag electrodes. For electric measurement, the ceramics were immersed in a silicone oil at 150 °C and poled for 30 min under a DC electrical field of 5.5 kV/mm. The temperature dependence of the dielectric constant was determined by LCR meter in the temperature range from room temperature to 700 °C (at 0.01–100 kHz). The d_{33} was measured by a piezo- d_{33} meter (ZJ-3A) and the mechanical quality factor (Q_m) by using an impedance analyser (Agilent 4294A).

III. Results and discussion

3.1. Phase structures

The Raman spectra of BTW-xC ceramics (Fig. 1), measured at ambient temperature, showed that high intensity and more pronounced bands occurred at ~94, ~272, 558 and ~862 cm⁻¹. Compared to the undoped Bi₄Ti₃O₁₂-based (BTW) ceramics, the low-frequency Raman peaks of the BTW-xC ceramics with varying doping ratios exhibited significant changes in both peak intensity and band position. For bismuth-layered piezoelectric ceramics, the phonon modes can be categorized into low-frequency modes below 200 cm⁻¹ and highfrequency modes above 200 cm⁻¹. Among them, the vibration mode around 93 cm⁻¹ is associated with the vibrations of Bi³⁺ ions in the bismuth-oxide layers. The mode at 269 cm⁻¹ corresponds to the twisting vibration of the TiO_6 octahedra. The modes at around 556 and 863 cm⁻¹ are associated with the stretching vibrations of the TiO₆ octahedra. The Raman vibrational modes in the low-frequency region are conventionally linked to lattice vibrations, particularly those associated with ion positions and lattice dynamics. In the case where the substitution of A-site ions leads to the lattice compression or a modification of ion-ion interactions, the frequencies of these low-frequency vibrational modes are observed to undergo an increase. This is known as the blue shift phenomenon in Raman spectra. After Ce⁴⁺ doping at the A-site, the low-frequency Raman peaks exhibit varying degrees of blue shift. This is attributed to the smaller ionic radius Ce⁴⁺ replacing the larger Bi³⁺ ion. The smaller ion typically causes a closer

Figure 1. Raman spectra of $Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O_{12}$ ceramics (x = 0, 0.02, 0.04, 0.06)

Figure 2. XRD patterns of Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O₁₂ ceramics (x = 0, 0.02, 0.04, 0.06) at room temperature

arrangement of surrounding oxygen ions and other lattice atoms, leading to the lattice distortion which results in the observed blue shift.

Figure 2 shows the room-temperature XRD pattern of the Ce^{4+} modified $Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O_{12}$ (x = 0, 0.02, 0.03, 0.05) three-layered Aurivillius ceramics. Preliminary XRD analysis confirms the crystallinity and phase purity of the Aurivillius ceramics. The XRD results indicate that the 2θ values and relative peak intensities align well with those specified in the PDF #73-2181 standard card of rhombohedral structure. It is evident that all the ceramics exhibit a bismuth oxide layertype structure with m = 3 and no secondary phases are observed within the detected range. The strongest diffraction peak for both the pure and Ce-modified BTW piezoelectric ceramics corresponds to (117) plane and is the highest diffraction peak of bismuth layer-structured materials (112m+1). In comparison to the pure BTW ceramics, the intensities of the XRD peaks increase and peak positions of the Ce-modified BTW ceramics exhibit slight shift as shown in Figs. 2a and 2b. This observation indicates that the dopant element has fully diffused into the lattice, forming a solid solution [16,17]. The observed shift is attributed to the substitution of smaller ionic radius Ce⁴⁺ (0.97 Å) cations for larger Bi^{3+} (1.03 Å) at various levels in the A-site of the perovskite-like layers. Such substitution results in varying degrees of distortion within the internal lattice of the ceramics.

The XRD data were analysed by the Rietveld refinement method. Subsequently, the least squares method applying the GSAS framework was employed to refine the fitting of the XRD data. The weighted profile *R*-factor (*RWP*) values for all samples after refinement consistently remain below 15%, with variance factor *JOG* values remaining under 2 [18]. These metrics confirm the reliability of our refinement results. Consequently, the lattice parameters presented in Fig. 4 were determined.

As depicted in Fig. 4, the lattice constants *a* and *c* of the ceramics initially increase and then decrease with the increasing Ce⁴⁺ doping while the trend for *b* differs. The maximum lattice constants a = 5.4624 Å and c = 32.8588 Å are observed at the doping level of x = 0.04, but at this point the value of *b* is relatively small, b = 5.4178 Å. This phenomenon is likely due to the preferential substitution of atoms along the *a* and *c* axis directions by the doped Ce⁴⁺ ions, resulting in changes to the lattice constants along these axes. The Ce⁴⁺ ions, possessing a larger ionic radius, induce lattice expan-

Figure 3. Rietveld profile fits for $Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O_{12}$ ceramics (x = 0, 0.02, 0.04, 0.06)

Figure 4. Lattice parameters of $Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O_{12}$ ceramics (x = 0, 0.02, 0.04, 0.06)

sion upon doping, leading to the increase in the lattice constants a and c [19–22].

The extent of lattice distortion in piezoelectric ceramics is closely associated with their piezoelectric and ferroelectric properties. Variations in the lattice distortion exert distinct effects on polarization, piezoelectric coupling and the ferroelectric phase transition of these ceramics. In bismuth layer-structured ferroelectric ceramics, lattice distortion refers to deviations in the atomic arrangement within the internal lattice, arising from variations in atomic size or the presence of structural defects. By modulating atomic doping, it is possible to adjust the degree of lattice distortion, with the aim to optimize the electronic structure and enhance polarization strength, thereby improving piezoelectric performance. This strategy has been demonstrated to be effective in optimizing ceramic properties, as evidenced by relevant studies [23-26].

To assess the extent of lateral lattice growth, the rhombohedral distortion index a/b is commonly used. A larger a/b value indicates a greater degree of rhombohedral distortion in the ceramics. As shown in Fig. 4, an increase in the a/b ratio suggests that the doping with Ce⁴⁺ ions promotes lateral lattice growth and alters the crystal structure and symmetry within the BTW ceramics, introducing anisotropy. This anisotropy can optimize the piezoelectric properties along specific crystal directions, leading to higher piezoelectric coefficients in those directions.

To further analyse the lattice distortion of the BTW-

xCe, we selected the (020) crystal planes of four ceramic samples with different doping ratios to calculate the distribution of their charge densities. The structure factors for the samples with various doping ratios were derived from the refinement results. The charge density distribution for each sample was subsequently calculated using the Fourier inverse transform. The specific formula is provided in the following equation:

$$P(r) = \frac{1}{V} \sum_{h} F(h) \cdot e^{-2\pi i h r}$$
(1)

where P(r) represents the electron density at position r which is a position vector in space, V is the cell volume, F(h) is a structure factor at position h, $e^{-2\pi i h r}$ is a complex exponential function, $h \cdot r$ represents the dot product of vectors h and r.

Black box lines were used to delineate the atomic lattice, thereby highlighting the extent of lattice distortion within the ceramics at different doping ratios. Since the characteristic crystal plane of all four ceramic samples is (117), which is in an orthogonal relationship with the (020) crystal plane, the (020) plane can also provide valuable insight into the internal lattice distortion within the ceramics [15,26,27]. The charge density distribution of the four samples on the (020) crystal plane is illustrated in Fig. 5. The lattice distortion within the ceramics shows a trend of initially increasing and then decreasing with the doping ratio. The undoped samples exhibit minimal lattice distortion, while the maximum distortion occurs at the doping level of x = 0.04.

Figure 5. Schematic diagram of charge density on the (020) plane of $Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O_{12}$: a) x = 0, b) x = 0.02, c) x = 0.04and d) x = 0.06

Figure 6. SEM images of $Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O_{12}$: a) x = 0, b) x = 0.02, c) x = 0.04 and d) x = 0.06

Figure 7. Average grain size and size distribution of Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O₁₂ ceramics

3.2. Microscopic morphology

Figure 6 presents SEM images of the BTW-*x*Ce ceramics after acid etching. The images clearly illustrate that the grains of BTW bismuth-layered piezoelectric

ceramics exhibit pronounced anisotropy in their growth direction. This characteristics is attributed to the accelerated growth rate of the bismuth-layered piezoceramic grains along the *c*-axis of the crystal, leading to the formation of a typical plate-like structure in all samples [28].

A total of fifty random grain size measurements were taken for each sample using the Nano Measurer software to generate a grain size distribution map and calculate the average grain size. The results indicate that as the doping level gradually increases, the surface of the ceramics becomes denser, the grain size becomes more uniform and the anisotropy is significantly reduced (Fig. 6). Notably, the grain size initially exhibits an upward trend, followed by a gradual decline (Fig. 7). This behaviour can be attributed to the tendency of Bi in BTW ceramics to form bismuth oxides at elevated temperatures, which subsequently volatilize and generate an increase in cationic vacancies. The expansion of defect vacancies within the ceramics is detrimental to the grain growth, as illustrated by Eqs. 2 and 3. The doping of Ce⁴⁺ can replace a portion of the Bi³⁺ element, thereby indirectly reducing the formation of defective vacancies in the ceramics, as shown in Eq. 4. At lower Ce^{4+} doping levels, the dopant element replaces Bi^{3+} in the perovskite-like layers away from the A-site, inducing lattice distortion. This distortion alleviates localized stress concentrations within the ceramics and creates favourable energy conditions. The regions of lattice distortion exhibit lower energy barriers, facilitating the

movement of atoms or ions, thereby promoting easier grain growth. However, when Ce^{4+} doping becomes excessive, the densification of the ceramic surface diminishes and the grain size is reduced. This phenomenon is primarily attributed to the accumulation of excess Ce^{4+} at grain boundaries, which impedes grain growth.

$$Bi_{2}O_{3} \xrightarrow{T} 2 Bi(g) \uparrow + \frac{3}{2}O_{2}(g) \uparrow + 2 V''_{Bi} + 3 V_{O}^{\bullet\bullet}$$
(2)

$$\frac{1}{2}O_2 + V_0^{\bullet\bullet} \longrightarrow O^{\times} + 2h^{\bullet} \qquad (3)$$

$$2 \operatorname{CeO}_2 \xrightarrow{\operatorname{Bi}_2\operatorname{O}_3} 2 \operatorname{Ce}^{\bullet}_{\operatorname{Bi}} + 2 \operatorname{O}_2(g) \uparrow + 2 e' \qquad (4)$$

The bulk densities of the sintered samples were determined using the Archimedes method and presented in Fig. 8. The results reveal a non-monotonic trend, with bulk density first increasing and then decreasing, reaching its maximum at x = 0.02. It is believed that doping with Ce⁴⁺ reduces the volatilization of bismuth at elevated temperatures and enhances the bulk density. However, as the doping concentration increases further, the bulk density decreases due to the increase in lattice distortion. This distortion may induce lattice stress, hindering atomic diffusion during the sintering process, which in turn leads to a reduction in bulk density.

Figure 8. Bulk densities of Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O₁₂ ceramics

3.3. Dielectric properties

Figure 9 illustrates the temperature dependence of the dielectric properties of the BTW-*x*Ce ceramics measured at various frequencies. As it can be seen, the temperature at which the peak of the dielectric constant curve occurs is identified as the Curie temperature (T_c). The Curie temperature marks the onset of the phase transition, which, in BTW ceramics, signifies the transition from the ferroelectric rhombohedral phase to the paraelectric tetragonal phase. At frequencies of 0.1, 1, 10 and 100 kHz, all samples exhibit a pronounced permittivity peak around 630 °C in the ε_r -*T* curves. The consistency of these permittivity peak positions across different frequencies indicates that the BTW-*x*Ce ceramics undergo a typical phase transition from the ferroelectric to the paraelectric state at this characteristic temperature.

The Curie temperature of the undoped BTW ceramics is 628 °C. As the doping level increases, the Curie temperature initially decreases before rising again. The lowest observed Curie temperature, 618 °C, occurs at a doping concentration of x = 0.04. For doping amounts of x = 0.02 and x = 0.06, the Curie temperatures are 620 and 622 °C, respectively (Fig. 9). This behaviour is closely related to the degree of lattice distortion within the piezoelectric ceramics. The relationship between lattice distortion and the Curie temperature can be evaluated using the tolerance factor *t*. This factor is commonly used to describe the stability of the lattice structure and the degree of geometric compatibility between the ions, which indirectly reflects the extent of internal lattice distortion, as illustrated in Eq. 5:

$$t = \frac{R_{\rm A} + R_{\rm O}}{\sqrt{2}(R_{\rm B} + R_{\rm O})} \tag{5}$$

where R_A is the ionic radius of the A-site cation, R_B is the ionic radius of the B-site cation, and R_O is the ionic radius of the oxyanion.

The greater the deviation of the tolerance factor then 1, the more pronounced the lattice distortion becomes. Lattice distortion leads to the increased stresses and defects within the lattice, rendering the lattice structure unstable and causing a reduction in the temperature at which the ferroelectric phase transitions to the paraelectric phase, known as the Curie temperature [29].

In bismuth layer-structured ferroelectric ceramics, internal lattice distortion primarily arises from the mismatch between the bismuth oxide layers and the perovskite-like layers. Specifically, the Bi³⁺ ions in the bismuth-oxygen layer are "under-bonded", while the A-site cations in the perovskite-like layers are "overbonded". The coexistence of these bonding states contributes to the stabilization of their structure [30]. Upon doping with Ce⁴⁺, the concentration of defects, such as oxygen vacancies, within the ceramics is reduced. Additionally, the dopant ions can enter the bismuth oxide layers, mitigating the "under-bonded" Bi³⁺ ions while increasing the "over-bonded" A-site cations in the perovskite-like layers. However, due to the differences in valence and ionic radius between the dopant and the host ions, this doping behaviour can further intensify the degree of lattice distortion within BTW ceramics, consequently leading to a decrease in the Curie temperature. The relative permittivity of the doped ceramic samples is significantly elevated. This phenomenon can be attributed to the introduction of higher valence cations at the A-site through doping substitution, which increases the number of excess electrons within the ceramics. Consequently, a greater number of free electrons are

Figure 9. Temperature dependence of dielectric properties of $Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O_{12}$ measured at different frequencies: a) x = 0, b) x = 0.02, c) x = 0.04 and d) x = 0.06

excited in the high-temperature region, which in turn can induce additional charges, thereby effectively increasing the relative permittivity of the ceramics.

The dielectric loss in bismuth layer-structured ferroelectric materials arises from energy dissipation during the movement of electrical domains and the reorientation of spontaneous polarization. This energy dissipation is primarily due to the frictional resistance encountered by domain wall motion as it interacts with the internal defects of the material. Across all ceramic samples, the dielectric loss remained relatively stable from room temperature up to approximately 450 °C. However, a marked increase in dielectric loss was observed in all samples when the temperature exceeded 450 °C, a phenomenon attributed to a significant rise in leakage current at elevated temperatures [31,32]. The intensity of the dielectric loss peaks in the ceramic samples exhibited a dual trend with respect to doping levels. Initially, the peak dielectric loss decreased with increasing doping, followed by a gradual increase. Notably, the un-

Figure 10. (a)-(d) The inverse dielectric constant at 100 kHz as a function of temperature for the BTW-xCe ceramic samples (insets are corresponding curves of $\ln(1/\epsilon - 1/\epsilon_m)/\ln(T - T_m)$ at 100 kHz)

doped sample exhibited the highest peak dielectric loss, while the sample with a doping level of x = 0.04 showed the lowest peak dielectric loss.

The reduction in the intensity of the dielectric loss peak can be attributed to a moderate Ce⁴⁺ doping, which induces a controlled lattice distortion. This distortion decreases the concentration of oxygen vacancies generated by the volatilization of the Bi³⁺ element, thereby diminishing the pinning effect of these defective vacancies on the electrical domains. Consequently, the electrical domains within the ceramics become more closely arranged, resulting in the reduced friction and loss. However, when the doping concentration was further increased to x = 0.06, the intensity of the dielectric loss peak exhibited a rebound. This phenomenon is likely due to the introduction of new defects, such as dislocations, caused by excessive doping. These defects amplify the pinning effect of the vacancies on the electrical domains, leading to the increased dielectric loss values in the samples [33].

Figure 10 illustrates relationship between the inverse dielectric constant and temperature for the BTW-*x*Ce ceramic samples at a frequency of 100 kHz. When the testing temperature exceeds the Curie temperature (T_C) of each ceramic composition, the inverse of the dielec-

tric constant for a typical ferroelectric material is expected to follow the Curie-Weiss law (for $T > T_m$), as expressed by the equation:

$$\frac{1}{\varepsilon} = \frac{T - T_{CW}}{C} \tag{6}$$

where C represents the Curie-Weiss constant and T_{CW} is the Curie-Weiss temperature, which can be obtained by fitting the above equation. These curves deviate from the Curie-Weiss law, and the degree of deviation is defined as $\Delta T_m = T_b - T_m$. T_b is the starting temperature at which the dielectric constant begins to follow the Curie-Weiss law, and T_m is the temperature at which the dielectric constant reaches its maximum value. Initially, the T_m value increases with increasing Ce⁴⁺ doping concentration, but then decreases. The trend of the dielectric constant temperature (ΔT_m) is consistent with the degree of diffusive phase transition. The variation in diffuseness is attributed to the lattice distortion and the change in the number of defect dipoles induced by Ce⁴⁺ ion doping in BTW ceramics. The maximum of the temperaturedependent dielectric constant (ΔT_m) value is observed at x = 0.04, corresponding to the point at which the dielectric relaxation behaviour of the ceramic sample is the most pronounced. For relaxor ferroelectrics, the re-

Figure 11. Changes in ΔT_m and γ of BTW-*x*Ce ceramic samples

lationship between the inverse dielectric constant and temperature is described by the modified Curie-Weiss law, as demonstrated in the following equation:

$$\frac{1}{\varepsilon} - \frac{1}{\varepsilon_m} = \frac{T - T_m}{C} \gamma \tag{7}$$

Here, ε_m is the peak dielectric constant, T_m is the temperature corresponding to the maximum dielectric constant, C is the Curie constant and γ is the diffuseness coefficient, with a value range of $1 < \gamma < 2$, indicating that the ceramic samples are relaxor ferroelectrics. The insets in Fig. 10 show the relationship between $\ln(1/\varepsilon - 1/\varepsilon_m)$ and $\ln(T - T_m)$ at 100 kHz, from which the value of the diffuseness coefficient γ can be calculated from the slope. The corresponding values are given in Fig. 11. The dielectric relaxation behaviour in relaxor ferroelectrics can be explained by the concepts of superparaelectricity and superferroelectricity. Due to the A-site doping by higher-valence Ce⁴⁺, lattice distortion, and charge imbalance occur in the perovskitelike layered structure, leading to the formation of polar nanoregions in all sample compositions, which promotes dielectric relaxation behaviour. Therefore, piezoelectric ceramics with pronounced relaxation behaviour can enhance their electrical properties.

3.4. Piezoelectric properties

Figure 12a illustrates the variation in the piezoelectric properties of the BTW ceramics with different doping amounts of Ce^{4+} . It is evident that the piezoelectric coefficient of the ceramics reaches a maximum d_{33} of 25 pC/N at a doping amount of x = 0.04, which is three times that of the undoped pure BTW ceramics (8 pC/N). This indicates a significant enhancement in the piezoelectric properties of the ceramics with Ce⁴⁺ doping. The enhancement in piezoelectric properties arises from the intrinsic nature of piezoelectricity, which is based on the asymmetry of positive and negative charges within the crystal. Substituting Bi³⁺ with Ce⁴⁺ ions further accentuates this asymmetry by inducing lattice distortion, thereby increasing the piezoelectric coefficient. An increase in structural asymmetry amplifies the relative displacements between ions in ceramic materials, particularly between cations and anions. This displacement enhances the material's polarization strength, thereby improving its piezoelectric coefficient. The introduction of lattice distortion generates internal stresses, which modify the local electric field distribution and facilitate domain wall motion. Moderate levels of internal stress can enhance domain wall mobility, leading to an improvement in the piezoelectric properties. However, the piezoelectric coefficient decreased to 18 pC/N when the doping amount was increased to x = 0.06. This reduction is primarily attributed to the excessive doping, which leads to an increase in the concentration of defects and vacancies within the ceramics. Consequently, the number of switched electric domain walls within the ceramics is reduced. Concurrently, the pinning effect on the electric domains is augmented, impairing the reorientation of the electric domains during the polarization process and rendering the polarization inadequate. This ultimately results in a decline in the piezoelectric properties [31].

Figure 12b illustrates the relationship between the d_{33} and depolarization temperature for the BTW-*x*Ce ce-

Figure 12. The d_{33} of BTW-xCe ceramics at room temperature (a) and at different temperatures (b)

ramics. For each temperature point in the temperaturedependent test, the ceramics were maintained at the set temperature for 30 min, and the d_{33} piezoelectric coefficient was measured for each ceramic composition at that temperature. As it is shown in Fig. 12, the d_{33} values of all experimental groups remain relatively stable with only a small variation below 500 °C, and the ceramics with x = 0.04 doping exhibited superior temperature stability. Above 500 °C, the d_{33} values of the ceramics decrease sharply, reaching only about 13% of the room temperature value.

Figure 13 presents a comparative analysis of the properties of the undoped BTW and doped BTW (with x = 0.04) ceramics. All properties of the doped BTW sample (with x = 0.04) exhibit marked improvement in comparison to those of the undoped BTW sample. Among the observed changes, the d_{33} , Q_m and average grain diameter exhibited notable increases, from 14 pC/N, 658, 2.57 µm to 25 pC/N, 3314, 3.1 µm, respectively. Furthermore, the tan δ value decreased from 0.16 to 0.09. In conclusion, the doped BTW ceramics with 4 at.% Ce has the potential to be utilized in applications at high temperatures.

Figure 13. Radar analysis plots of BTW-*x*Ce ceramics for x = 0 and x = 0.04

IV. Conclusions

Bi_{4-x}Ce_xTi_{2.95}W_{0.05}O₁₂ (BCTW, x = 0, 0.02, 0.04, 0.06) ceramic samples were prepared by the conventional solid-state reaction technique and sintering at 1080 °C. The doping with Ce⁴⁺ into the pristine ceramic formulation was performed to modulate the degree of lattice distortion. The resulting doped ceramics were thoroughly examined, focusing on their micromorphology as well as their piezoelectric and dielectric properties. This investigation led to the following conclusions:

1. All the prepared ceramic samples exhibited a bismuth layered structure with m = 3. A detailed analysis of the lattice parameters enabled the calculation of the rhombohedral distortion index, demonstrating that the degree of lattice distortion in piezoelectric ceramics can be effectively regulated through the introduction of Ce^{4+} .

- 2. The doping of Ce⁴⁺ facilitates enhanced grain growth by increasing the degree of lattice distortion in the ceramics. This process not only improves the surface density of the ceramics but also significantly enhances their piezoelectric properties.
- Doping with Ce⁴⁺ enhances the degree of lattice distortion in the ceramics, which further reduces defects and vacancies. This reduction weakens the pinning effect of the internal domains, thereby significantly improving the dielectric properties of the ceramics.

References

- T. Zheng, J. Wu, D. Xiao, "Recent development in leadfree perovskite piezoelectric bulk materials", *Prog. Mater. Sci.*, 98 (2018) 552–624.
- S. Zhang, F. Yu, "Piezoelectric materials for high temperature sensors", J. Am. Ceram. Soc., 94 [10] (2011) 3153– 3170.
- A. Moure, A. Castro, L. Pardo, "Aurivillius-type ceramics, a class of high temperature piezoelectric materials: Drawbacks, advantages and trends", *Prog. Solid State Chem.*, 37 [1] (2009) 15–39.
- T. Stevenson, D.G. Martin, P.I. Cowin, "Piezoelectric materials for high temperature transducers and actuators", J. Mater. Sci. Mater. Electron., 26 (2015) 9256–9267.
- A. Peláiz-Barranco, Y. González-Abreu, "Ferroelectric ceramic materials of the Aurivillius family", *J. Adv. Dielectr.*, 3 [4] (2013) 1330003.
- X.C Xie, Z.Y. Zhou, R.H. Liang, X.L. Dong, "Superior piezoelectricity in bismuth titanate-based lead-free hightemperature piezoceramics via domain engineering", *Adv. Electron. Mater.*, 8 [7] (2022) 2101266.
- M. Takahashi, Y. Noguchi, M. Miyayama, "Effects of Vdoping on mixed conduction properties of bismuth titanate single crystals", *Jpn. J. Appl. Phys.*, 42 [9S] (2003) 6222.
- R.L. Withers, J.G. Thompson, A.D. Rae, "The crystal chemistry underlying ferroelectricity in Bi₄Ti₃O₁₂, Bi₃TiNbO₉, and Bi₂WO₆", *J. Solid State Chem.*, **94** [2] (1991) 404–417.
- Q. Zhang, Y. Zhang, H. Sun, Q. Sun, X. Wang, X. Hao, S. An, "Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na_{0.5}Bi_{2.5}Nb₂O₉ ferroelectrics", *J. Eur. Ceram. Soc.*, **37** [3] (2017) 955–966.
- J.N. Chen, Q. Wang, H.T. Lu, X. Zhao, C.M. Wang, "Enhanced electrical properties and conduction mechanism of A-site rare-earth Nd-substituted CaBi₂Nb₂O₉", *J. Phys. D Appl. Phys.*, 55 [31] (2022) 315301.
- 11. J. Hou, R.V. Kumar, Y. Qu, D. Krsmanovic, "B-site doping effect on electrical properties of Bi₄Ti_{3-2x}Nb_xTa_xO₁₂ ceramics", *Scripta Mater.*, **61** [6] (2009) 664–667.
- Z.G. Gai, M.L. Zhao, W.B. Su, C.L. Wang, J. Liu, J.L. Zhang, "Influences of ScTa co-substitution on the properties of Ultra-high temperature Bi₃TiNbO₉-based piezo-electric ceramics", *J. Electroceram.*, **31** (2013) 143–147.
- J. Hou, Y. Qu, R. Vaish, K.B.R. Varma, D. Krsmanovic, R. Vasant Kumar, "Crystallographic evolution, dielectric, and piezoelectric properties of Bi₄Ti₃O₁₂: W/Cr ceramics", J.

Am. Ceram. Soc., 93 [5] (2010) 1414–1421.

- T. Sivakumar, M. Itoh, "Ferroelectric phase transitions in new Aurivillius oxides: Bi_{2+2x}Sr_{1-2x}Nb_{2-x}Sc_xO₉", *J. Mater. Chem.*, **21** [29] (2011) 10865–10870.
- H. Yan, Z. Zhang, W. Zhu, L. He, Y. Yu, C. Li, J. Zhou, "The effect of (Li,Ce) and (K,Ce) doping in Aurivillius phase material CaBi₄Ti₄O₁₅", *Mater. Res. Bull.*, **39** [9] (2004) 1237–1246.
- F. Rehman, J.-B. Li, M.-S. Cao, Y.-J. Zhao, M. Rizwan, H.-B. Jin, "Contribution of grains and grain boundaries to dielectric relaxations and conduction of Aurivillius Bi₄Ti₂Fe_{0.5}Nb_{0.5}O₁₂ ceramics", *Ceram. Int.*, **41** [10] (2015) 14652–14659.
- C.-M. Wang, J.-F. Wang, C. Mao, X. Chen, X. Dong, Z.-G. Gai, M.-L. Zao, "Enhanced dielectric and piezoelectric properties of aurivillius-type potassium bismuth titanate ceramics by cerium modification", *J. Am. Ceram. Soc.*, **91** [9] (2008) 3094–3097.
- A. Kumar, D. Varshney, ",Crystal structure refinement of Bi_{1-x}Nd_xFeO₃ multiferroic by the Rietveld method", *Ceram. Int.*, **38** [5] (2012) 3935–3942.
- V. Shrivastava, A.K. Jha, R.G.. Mendiratta, "Dielectric studies of La and Pb doped SrBi₂Nb₂O₉ ferroelectric ceramic", *Mater. Lett.*, **60** [12] (2006) 1459–1462.
- C.L. Diao, J.B. Xu, H.W. Zheng, L. Fabg, Y.Z. Gu, W.F. Zhang, "Dielectric and piezoelectric properties of cerium modified BaBi₄Ti₄O₁₅ ceramics", *Ceram. Int.*, **39** [6] (2013) 6991–6995.
- Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, "Crystal structures and ferroelectric properties of SrBi₂Ta₂O₉ and Sr_{0.8}Bi_{2.2}Ta₂O₉", *Appl. Phys. Lett.*, **74** [13] (1999) 1904–1906.
- Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, F. Izumi, "Crystal structure and ferroelectric properties of ABi₂Ta₂O₉ (A = Ca, Sr, and Ba)", *Phys. Rev. B*, **61** [10] (2000) 6559–6564.
- G. Liu, C. Wu, Y. Chen, D. Liang, B. Wang, J. Wu, Q. Chen, "Enhanced ferroelectricity of CaBi₂Nb₂O₉-based high-temperature piezoceramics by pseudo-tetragonal distortion", *Ceram. Int.*, 44 [6] (2018) 5880–5885.

- X.X. Tian, S.B. Qu, H.L. Du, Y. Li, Z. Xu, "Effects of (LiCe) co-substitution on the structural and electrical properties of CaBi₂Nb₂O₉ ceramics", *Chin. Phys. B*, **21** [3] (2012) 037701.
- X. Xie, Z. Zhou, T. Chen, R. Liang, X. Dong, "Enhanced electrical properties of NaBi modified CaBi₂Nb₂O₉-based Aurivillius piezoceramics via structural distortion", *Ceram. Int.*, 45 [5] (2019) 5425–5430.
- C.-M. Wang, J.-F. Wang, S. Zhang, T.R. Shrout, "Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na_{0.5}Bi_{4.5}Ti₄O₁₅) piezoelectric ceramics at elevated temperature", *J. Appl. Phys.*, **105** [9] (2009) 094110.
- X.C. Xie, Z.Y. Zhou, T. Chen, R.H. Liang, X.L. Dong, "Enhanced electrical properties of NaBi modified CaBi₂Nb₂O₉-based Aurivillius piezoceramics via structural distortion", *Ceram. Int.*, 45 [5] (2019) 5425–5430.
- Q.Q. Hou, B. Yang, C. Ma, Z.Y. Zhou, R.H. Liang H. Li, X.L. Dong, "Tailoring structure and piezoelectric properties of CaBi₂Nb₂O₉ ceramics by W⁶⁺-doping", *Ceram. Int.*, **48** [12] (2022) 16677–16684.
- 29. X. Xie, Z. Zhou, R. Liang, X. Dong, "Superior piezoelectricity in bismuth titanate-based lead-free hightemperature piezoceramics via domain engineering", *Adv. Electron. Mater.*, **8** [7] (2022) 2101266.
- S.M. Blake, M.J. Falconer, M. McCreedy, P. Lightfoot, "Cation disorder in ferroelectric Aurivillius phases of the type Bi₂ANb₂O₉ (A = Ba, Sr, Ca)", *J. Mater. Chem.*, 7 [8] (1997) 1609–1613.
- C. Long, B. Wang, W. Ren, K. Zheng, H. Fan, D. Wang, L. Liu, "Significantly enhanced electrical properties in CaBi₂Nb₂O₉-based high-temperature piezoelectric ceramics", *Appl. Phys. Lett.*, **117** [3] (2020) 032902.
- G. Liu, D. Wang, C. Wu, J. Wu, Q. Chen, "A realization of excellent piezoelectricity and good thermal stability in CaBi₂Nb₂O₉: Pseudo phase boundary", *J. Am. Ceram. Soc.*, **102** [4] (2019) 1794–1804.
- O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, "Space-charge relaxation in perovskites", *Phys. Rev. B*, 49 [12] (1994) 7868–7873.